Oxygen-poor microzones as potential sites of microbial n(2) fixation in nitrogen-depleted aerobic marine waters.

نویسندگان

  • H W Paerl
  • L E Prufert
چکیده

The nitrogen-deficient coastal waters of North Carolina contain suspended bacteria potentially able to fix N(2). Bioassays aimed at identifying environmental factors controlling the development and proliferation of N(2) fixation showed that dissolved organic carbon (as simple sugars and sugar alcohols) and particulate organic carbon (derived from Spartina alterniflora) additions elicited and enhanced N(2) fixation (nitrogenase activity) in these waters. Nitrogenase activity occurred in samples containing flocculent, mucilage-covered bacterial aggregates. Cyanobacterium-bacterium aggregates also revealed N(2) fixation. In all cases bacterial N(2) fixation occurred in association with surficial microenvironments or microzones. Since nitrogenase is oxygen labile, we hypothesized that the aggregates themselves protected their constituent microbes from O(2). Microelectrode O(2) profiles revealed that aggregates had lower internal O(2) tensions than surrounding waters. Tetrazolium salt (2,3,5-triphenyl-3-tetrazolium chloride) reduction revealed that patchy zones existed both within microbes and extracellularly in the mucilage surrounding microbes where free O(2) was excluded. Triphenyltetrazolium chloride reduction also strongly inhibited nitrogenase activity. These findings suggest that N(2) fixation is mediated by the availability of the appropriate types of reduced microzones. Organic carbon enrichment appears to serve as an energy and structural source for aggregate formation, both of which were required for eliciting N(2) fixation responses of these waters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptic oxygen cycling in anoxic marine zones.

Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core o...

متن کامل

Nitrogen Fixation in Denitrified Marine Waters

Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly th...

متن کامل

Microbial associations with macrobiota in coastal ecosystems: patterns and implications for nitrogen cycling

N (N) is often a limiting nutrient in coastal marine systems, but human activities have doubled the availability of this nutrient over the past century, particularly via fertilizer production to sustain increases in agriculture (Galloway et al. 1995). In coastal ecosystems receiving anthropogenic N, excess N can fuel harmful algal blooms, and the decomposition of organic (dead algal) material v...

متن کامل

Direct and Indirect Costs of Dinitrogen Fixation in Crocosphaera watsonii WH8501 and Possible Implications for the Nitrogen Cycle

The recent detection of heterotrophic nitrogen (N(2)) fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N(2) fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N(2) fixing) cyanobacterium, we demonstrated that the presenc...

متن کامل

Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 53 5  شماره 

صفحات  -

تاریخ انتشار 1987